1. f(t)=A0e−0.0000000087t
2. less than 230 years, 229.3157 to be exact
3. f(t)=A0e3ln2t
4. 6.026 hours
5. 895 cases on day 15
6. Exponential. y=2e0.5x.
7. y=3e(ln0.5)x
Solutions to Odd-Numbered Exercises
1. Half-life is a measure of decay and is thus associated with exponential decay models. The half-life of a substance or quantity is the amount of time it takes for half of the initial amount of that substance or quantity to decay.
3. Doubling time is a measure of growth and is thus associated with exponential growth models. The doubling time of a substance or quantity is the amount of time it takes for the initial amount of that substance or quantity to double in size.
5. An order of magnitude is the nearest power of ten by which a quantity exponentially grows. It is also an approximate position on a logarithmic scale; Sample response: Orders of magnitude are useful when making comparisons between numbers that differ by a great amount. For example, the mass of Saturn is 95 times greater than the mass of Earth. This is the same as saying that the mass of Saturn is about 102 times, or 2 orders of magnitude greater, than the mass of Earth.
7. f(0)≈16.7; The amount initially present is about 16.7 units.
9. 150
11. exponential; f(x)=1.2x
13. logarithmic
15. logarithmic
17.
19. about 1.4 years
21. about 7.3 years
23. 4 half-lives; 8.18 minutes
25. ⎩⎨⎧M=32log(S0S)log(S0S)=23MS0S=1023MS=S01023M//
27. Let y=bx for some non-negative real number b such that b=1. Then,
⎩⎨⎧ln(y)=ln(bx)ln(y)=xln(b)eln(y)=exln(b)y=exln(b)
29. A=125e(−0.3567t);A≈43 mg
31. about 60 days
33. f(t)=250e(−0.00914t); half-life: about 76 minutes
35. r≈−0.0667, So the hourly decay rate is about 6.67%
37. f(t)=1350e(0.03466t); after 3 hours: P(180)≈691,200
39. f(t)=256e(0.068110t); doubling time: about 10 minutes
41. about 88 minutes
43. T(t)=90e(−0.008377t)+75, where t is in minutes.
45. about 113 minutes
47. log(x)=1.5;x≈31.623
49. MMS magnitude: 5.82
51. N(3)≈71
53. C
Licenses & Attributions
CC licensed content, Shared previously
Precalculus.Provided by: OpenStaxAuthored by: Jay Abramson, et al..Located at: https://openstax.org/books/precalculus/pages/1-introduction-to-functions.License: CC BY: Attribution. License terms: Download For Free at : http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175..